
Dimension reduction and manifold learning

A non-exhaustive tour into nonlinear dimension reduction

Eddie Aamari

Département de mathématiques et applications

CNRS, ENS PSL

Master MASH — Dauphine PSL

Dimensionality Reduction Overview

1

More Graph and Spectral Methods

Laplacian Eigenmaps

Laplacian Eigenmaps originates from Belkin and Niyogi 2003.

Initially, the method was intended to remedy some shortcomings of other spectral

methods like Isomap and LLE.

Related methods in MDS

LE is reminiscent of the spectral graph drawing of (Hall 1970).

See also Klimenta 2012, Section 3.4.3.

2

Laplacian Eigenmaps

Step 1: Graph. Build neighbors Ni of each point.

Given scale parameter t > 0, set K ∈ Rn×n with

ki,j = e−
∥xj−xi∥

2

t I{j ∈ Ni} for all i, j ∈ {1, . . . , n} .

Step 2: Laplacian. Compute the Laplacian matrix

D := diag(K1n), L := D −K.

Step 3: Embedding. Compute the d + 1 smallest generalized eigenvectors

v0, . . . , vd ∈ Rn associated to (L,D):

’ Lvk = λkDvk ’

and set YLE := (λ1v1 | · · · | λdvd) ∈ Rn×d.

3

Laplacian Eigenmaps

Step 1: Graph. Build neighbors Ni of each point.

Given scale parameter t > 0, set K ∈ Rn×n with

ki,j = e−
∥xj−xi∥

2

t I{j ∈ Ni} for all i, j ∈ {1, . . . , n} .

Step 2: Laplacian. Compute the Laplacian matrix

D := diag(K1n), L := D −K.

Step 3: Embedding. Compute the d + 1 smallest generalized eigenvectors

v0, . . . , vd ∈ Rn associated to (L,D):

’ Lvk = λkDvk ’

and set YLE := (λ1v1 | · · · | λdvd) ∈ Rn×d.

3

Laplacian Eigenmaps

Step 1: Graph. Build neighbors Ni of each point.

Given scale parameter t > 0, set K ∈ Rn×n with

ki,j = e−
∥xj−xi∥

2

t I{j ∈ Ni} for all i, j ∈ {1, . . . , n} .

Step 2: Laplacian. Compute the Laplacian matrix

D := diag(K1n), L := D −K.

Step 3: Embedding. Compute the d + 1 smallest generalized eigenvectors

v0, . . . , vd ∈ Rn associated to (L,D):

’ Lvk = λkDvk ’

and set YLE := (λ1v1 | · · · | λdvd) ∈ Rn×d.
3

Insights behind Laplacian Eigenmaps

For all candidate embedding Y = (y1 | · · · | yn)⊤ ∈ Rn×d, it turns out as soon as K is

symmetric,

1

2

n∑
i,j=1

ki,j∥yi − yj∥2 = Tr(Y ⊤LY),

where L = D −K as before.

Indeed,

1

2

∑
i,j

ki,j∥yi − yj∥2 =
1

2

n∑
i,j=1

(ki,jyiy
⊤
i + yjy

⊤
j − 2yiy

⊤
j)

=
1

2

∑
i

Di,iyiy
⊤
i +

1

2

∑
j

Dj,jyjy
⊤
j −

∑
i,j

ki,jyiy
⊤
j

= Tr(Y ⊤(D −K)Y).

4

Insights behind Laplacian Eigenmaps

For all candidate embedding Y = (y1 | · · · | yn)⊤ ∈ Rn×d, it turns out as soon as K is

symmetric,

1

2

n∑
i,j=1

ki,j∥yi − yj∥2 = Tr(Y ⊤LY),

where L = D −K as before. Indeed,

1

2

∑
i,j

ki,j∥yi − yj∥2 =
1

2

n∑
i,j=1

(ki,jyiy
⊤
i + yjy

⊤
j − 2yiy

⊤
j)

=
1

2

∑
i

Di,iyiy
⊤
i +

1

2

∑
j

Dj,jyjy
⊤
j −

∑
i,j

ki,jyiy
⊤
j

= Tr(Y ⊤(D −K)Y).

4

Constraints

Without a constraint, argminY ∈Rn×d Tr(Y ⊤LY) = 0.

Similar to LLE, put the covariance constraint Y TDY = Id×d.

(D weights the vertices: the larger Di,i, the more “important” is that vertex.)

Vector y = 1 ∈ Rn is a trivial eigenvector of L.

Eliminate it with an orthogonality constraint Y ⊤D1 = 0.

ELE = argmin
Y ⊤DY=Id×d

Y ⊤D1=0

Tr(Y ⊤LY).

This is a generalized eigenvalue problem with solution

YLE = (λ1v1 | · · · | λdvd).

5

Constraints

Without a constraint, argminY ∈Rn×d Tr(Y ⊤LY) = 0.

Similar to LLE, put the covariance constraint Y TDY = Id×d.

(D weights the vertices: the larger Di,i, the more “important” is that vertex.)

Vector y = 1 ∈ Rn is a trivial eigenvector of L.

Eliminate it with an orthogonality constraint Y ⊤D1 = 0.

ELE = argmin
Y ⊤DY=Id×d

Y ⊤D1=0

Tr(Y ⊤LY).

This is a generalized eigenvalue problem with solution

YLE = (λ1v1 | · · · | λdvd).

5

Constraints

Without a constraint, argminY ∈Rn×d Tr(Y ⊤LY) = 0.

Similar to LLE, put the covariance constraint Y TDY = Id×d.

(D weights the vertices: the larger Di,i, the more “important” is that vertex.)

Vector y = 1 ∈ Rn is a trivial eigenvector of L.

Eliminate it with an orthogonality constraint Y ⊤D1 = 0.

ELE = argmin
Y ⊤DY=Id×d

Y ⊤D1=0

Tr(Y ⊤LY).

This is a generalized eigenvalue problem with solution

YLE = (λ1v1 | · · · | λdvd).
5

What Laplacian Eigenmaps does

For n→∞ and t→ 0, convergence to the eigenstructure towards the

Laplace-Beltrami operator ∆M of the sampled manifold M ⊂ Rp:

∆M : C2(M) −→ L2(M)

f 7−→ −div(∇f),

Pointwise results in Belkin and Niyogi 2006.

General uniform convergence in Garćıa Trillos et al. 2020.

Refined versions in Wahl 2024.

6

Insights Behind Laplacian Eigenmaps

Functional Formulation

Embed M ⊂ Rp in dimension d = 1 “as best as possible”

⇔
Find f :M → R that preserves geodesic distances

If f ∈ C2(M), then for all x, x′ ∈M ,

|f(x)− f(x′)| ≤
(
max
γx→x′

∥∇f∥
)
dM (x, x′)

≤
(
∥∇xf∥+ o(1)

)
dM (x, x′).

⇒ ∥∇xf∥ testifies of how far apart f maps nearby points.

7

Insights Behind Laplacian Eigenmaps

Functional Formulation

Embed M ⊂ Rp in dimension d = 1 “as best as possible”

⇔
Find f :M → R that preserves geodesic distances

If f ∈ C2(M), then for all x, x′ ∈M ,

|f(x)− f(x′)| ≤
(
max
γx→x′

∥∇f∥
)
dM (x, x′)

≤
(
∥∇xf∥+ o(1)

)
dM (x, x′).

⇒ ∥∇xf∥ testifies of how far apart f maps nearby points.

7

Insights Behind Laplacian Eigenmaps

Functional Formulation

Embed M ⊂ Rp in dimension d = 1 “as best as possible”

⇔
Find f :M → R that preserves geodesic distances

If f ∈ C2(M), then for all x, x′ ∈M ,

|f(x)− f(x′)| ≤
(
max
γx→x′

∥∇f∥
)
dM (x, x′)

≤
(
∥∇xf∥+ o(1)

)
dM (x, x′).

⇒ ∥∇xf∥ testifies of how far apart f maps nearby points.

7

Insights Behind Laplacian Eigenmaps

Functional Formulation

We may try to find f that preserves locality on average over M :

argmin
f∈C2(M)

∫
M
∥∇f∥2dvolM

� f 7→ ∇f is invariant by addition of constants ⇒ Impose
∫
M fdvolM = 0

� Taking f = 0 trivially solves the problem ⇒ Impose
∫
M f2dvolM = 1

We end up considering

argmin∫
M f2dvolM=1∫
M fdvolM=0

∫
M
∥∇f∥2dvolM

8

Insights Behind Laplacian Eigenmaps

Functional Formulation

We may try to find f that preserves locality on average over M :

argmin
f∈C2(M)

∫
M
∥∇f∥2dvolM

� f 7→ ∇f is invariant by addition of constants ⇒ Impose
∫
M fdvolM = 0

� Taking f = 0 trivially solves the problem ⇒ Impose
∫
M f2dvolM = 1

We end up considering

argmin∫
M f2dvolM=1∫
M fdvolM=0

∫
M
∥∇f∥2dvolM

8

Insights Behind Laplacian Eigenmaps

Functional Formulation

We may try to find f that preserves locality on average over M :

argmin
f∈C2(M)

∫
M
∥∇f∥2dvolM

� f 7→ ∇f is invariant by addition of constants ⇒ Impose
∫
M fdvolM = 0

� Taking f = 0 trivially solves the problem ⇒ Impose
∫
M f2dvolM = 1

We end up considering

argmin∫
M f2dvolM=1∫
M fdvolM=0

∫
M
∥∇f∥2dvolM

8

Insights Behind Laplacian Eigenmaps

From Gradient to Laplace Operator

For all f ∈ C2(M),∫
M
∥∇f∥2dvolM =

∫
M
⟨∇f,∇f⟩dvolM =

∫
M
f∆MfdvolM ,

which leads to the energy minimization

argmin∫
M f2dvolM=1∫
M fdvolM=0

∫
M
f∆MfdvolM .

9

Insights Behind Laplacian Eigenmaps

From Laplace Operator to its Eigenstructure

f∗1 ∈ argmin∫
M f2dvolM=1∫
M fdvolM=0

∫
M
f∆MfdvolM

∫
M
f∗1dvolM = 0

∫
M
(f∗1)

2dvolM = 1∫
M
g∆Mf

∗
1dvolM = λ1

∫
M
gf∗1dvolM for all g ∈ C2(M)

with associated energy∫
M
f∗1∆Mf

∗dvolM = λ1

∫
M
(f∗1)

2dvolM = λ1.

10

Insights Behind Laplacian Eigenmaps

Higher Order Eigenstructure

The second best such function naturally solves

f∗2 ∈ argmin∫
M f2dvolM=1∫
M fdvolM=0∫

M ff∗
1 dvolM=0

∫
M
f∆MfdvolM

Applying Lagrange multipliers again∫
M
f∗2dvolM = 0

∫
M
(f∗2)

2dvolM = 1∫
M
g∆Mf

∗
2dvolM = λ

∫
M
gf∗2dvolM for all g ∈ C2(M)

and

∫
M
f∗1 f

∗
2dvolM = 0.

11

Insights Behind Laplacian Eigenmaps

Discretization

Writing Kt(xi, xj) = e−
∥xj−xi∥

2

t I{j ∈ Ni} and y = f(x),

∑
i,j

ki,j∥yj − yi∥2 =
∑
i

∑
j

∥f(xj)− f(xi)∥2Kt(xi, xj)

≃n→∞

∫
M

∫
M
∥f(x′)− f(x)∥2Kt(x, x

′)dvolM (x′)dvolM (x)

≃t→0

∫
M

∫
B(x,t)

⟨∇f(x), x′ − x⟩2dvolM (x′)dvolM (x)

∝t→0

∫
M
∥∇f∥2dvolM

12

Insights Behind Laplacian Eigenmaps

Dictionnary

Object Continuous Discrete

Set M X ≃ {1, . . . , n}
Point x ∈M i ∈ {1, . . . , n}
Map f ∈ RM y ∈ R1×n

Gradient ∇f(x)
(√

ki,j(f(xj)− f(xi))
)
j∈Ni

Loss
∫
M ∥∇f∥

2dvolM
∑

i,j ki,j(yj − yi)2

13

Hessian LLE – Hessian eigenmaps

Hessian LLE – Hessian eigenmaps originates from Donoho and Grimes 2003.

� Variant of LLE that minimizes the “curviness” of the high-dimensional manifold

when embedding it into a low-dimensional space,

� Shares many characteristics with Laplacian Eigenmaps:

↪→ it replaces the gradient by the Hessian.

argmin
f

∫
M
∥HMf∥2FdvolM

14

Heuristic

If M is isometric to an open connected subset of Rd, then the quadratic form

H(f) :=
∫
M
∥HMf(x)∥2dvolM (x)

has a (d+ 1)-dimensional null space consisting of:

� the constant functions; (as for Laplacian Eigenmaps)

� a d-dimensional space of functions spanned by the original isometric coordinates.

Hence, the isometric coordinates can be recovered, up to a rigid motion, from the null

space of H.

Drawbacks

H-LLE is computationally heavy, as it requires to estimate tangent spaces at each data

point.

15

Heuristic

If M is isometric to an open connected subset of Rd, then the quadratic form

H(f) :=
∫
M
∥HMf(x)∥2dvolM (x)

has a (d+ 1)-dimensional null space consisting of:

� the constant functions; (as for Laplacian Eigenmaps)

� a d-dimensional space of functions spanned by the original isometric coordinates.

Hence, the isometric coordinates can be recovered, up to a rigid motion, from the null

space of H.

Drawbacks

H-LLE is computationally heavy, as it requires to estimate tangent spaces at each data

point.

15

H-LLE Example

Figure 1: from Donoho and Grimes 2003. 16

Local Tangent Space Alignment

Local Tangent Space Alignment comes from Zhang and Zha 2004

Idea

If correctly unfolded, transformed data should have all its tangent spaces aligned

Related Methods

As Hessian LLE, LTSA works with charts from tangent spaces

See also Parallel transport unfolding of Budninskiy et al. 2019.

17

Local Tangent Space Alignment

Step 1: Graph. Build neighbors Ni of each point xi.

Step 2: Tangent Space Estimation. Estimate TxiM by local PCA on neighbor-

hood Ni.

Step 3: Global coordinates. Find a global coordinate system that best represents

neighborhoods in these tangent spaces.

h

xi T̂PCA
j

Figure 2: The local steps of LTSA.

18

Local Tangent Space Alignment

Step 1: Graph. Build neighbors Ni of each point xi.

Step 2: Tangent Space Estimation. Estimate TxiM by local PCA on neighbor-

hood Ni.

Step 3: Global coordinates. Find a global coordinate system that best represents

neighborhoods in these tangent spaces.

Figure 2: The local steps of LTSA.

18

Kernel Methods

Kernel PCA

Kernel PCA formally arises from Schölkopf, Smola, and Müller 1998

It is a nonlinear generalization of PCA, already in use in applied statistics when

introducing new variables to enrich the model.

Idea

� Transform data into features living in a higher (possibly infinite) dimensional space

� Apply PCA to them

19

Kernel PCA

Let F be a Hilbert space.

Let Φ : Rp → F be the feature map.

Step 1: Featurization

Write X̃ = {Φ(x1), . . . ,Φ(xn)}.
Step 2: Principal components

Perform PCA on X̃ .

Here, Φ is fixed and problem-specific. Choice can be driven by:

� how linear Φ(X) is;
� how small dim(F) is.

20

Intended Principle of Kernel PCA

Figure 3: from Schölkopf, Smola, and Müller 1998
21

Why “Kernel” PCA?

Recall that given a point cloud X = USV ⊤ ∈ Rn×p,

PCA ⇔ Classical scaling

Covariance X⊤X = V S⊤SV ⊤ Gram XX⊤ = USS⊤U⊤

↪→ Y = US∗,[d] ←↩

Principal components in F can be computed only from K(xi, xj) = ⟨Φ(xi),Φ(xj)⟩,
which can sometimes be done without computing any Φ(x).

This is often referred to as the kernel trick.

Step 1: Kernel Matrix: Compute K := (K(xi, xj))1≤i,j≤n

Step 2: SVD: Write K = US2U⊤

Step 3: Truncation: Output YKPCA := US∗,[d]
22

Kernel Trick

� Polynomial kernel K(xi, xj) = (1 + ⟨xi, xj⟩)r

K(xi, xj) = (1 + ⟨xi, xj⟩)r =
r∑

ℓ=1

(
r

ℓ

)
⟨xi, xj⟩ℓ,

with

⟨xi, xj⟩ℓ =

(
d∑

k=1

x
(k)
i x

(k)
j

)ℓ

=
∑

u1+...+ud=ℓ

ℓ!

u1! . . . ud!
(x

(k)
i x

(k)
j)u1 . . . (x

(k)
i x

(k)
j)ud

Here, F = R≤r[x
(1), . . . , x(d)] and dim(F) ≍ (d+ r)r

23

Kernel Trick

� Polynomial kernel K(xi, xj) = (1 + ⟨xi, xj⟩)r

K(xi, xj) = (1 + ⟨xi, xj⟩)r =
r∑

ℓ=1

(
r

ℓ

)
⟨xi, xj⟩ℓ,

with

⟨xi, xj⟩ℓ =

(
d∑

k=1

x
(k)
i x

(k)
j

)ℓ

=
∑

u1+...+ud=ℓ

ℓ!

u1! . . . ud!
(x

(k)
i x

(k)
j)u1 . . . (x

(k)
i x

(k)
j)ud

Here, F = R≤r[x
(1), . . . , x(d)] and dim(F) ≍ (d+ r)r

23

Kernel Trick

� Polynomial kernel K(xi, xj) = (1 + ⟨xi, xj⟩)r

K(xi, xj) = (1 + ⟨xi, xj⟩)r =
r∑

ℓ=1

(
r

ℓ

)
⟨xi, xj⟩ℓ,

with

⟨xi, xj⟩ℓ =

(
d∑

k=1

x
(k)
i x

(k)
j

)ℓ

=
∑

u1+...+ud=ℓ

ℓ!

u1! . . . ud!
(x

(k)
i x

(k)
j)u1 . . . (x

(k)
i x

(k)
j)ud

Here, F = R≤r[x
(1), . . . , x(d)] and dim(F) ≍ (d+ r)r

23

Kernel Trick

� Gaussian kernel K(xi, xj) = exp
(
−∥xi−xj∥2

2σ2

)

For d = 1 and σ2 = 1,

K(xi, xj) =

〈
e−x2

i /2

(
1, xi,

x2i√
2!
, . . .

)
, e−x2

j/2

(
1, xj ,

x2j√
2!
, . . .

)〉
ℓ2(N)

Here, F = ℓ2(N) and dim(F) =∞

24

Kernel Trick

� Gaussian kernel K(xi, xj) = exp
(
−∥xi−xj∥2

2σ2

)
For d = 1 and σ2 = 1,

K(xi, xj) =

〈
e−x2

i /2

(
1, xi,

x2i√
2!
, . . .

)
, e−x2

j/2

(
1, xj ,

x2j√
2!
, . . .

)〉
ℓ2(N)

Here, F = ℓ2(N) and dim(F) =∞

24

Kernel Trick

� Gaussian kernel K(xi, xj) = exp
(
−∥xi−xj∥2

2σ2

)
For d = 1 and σ2 = 1,

K(xi, xj) =

〈
e−x2

i /2

(
1, xi,

x2i√
2!
, . . .

)
, e−x2

j/2

(
1, xj ,

x2j√
2!
, . . .

)〉
ℓ2(N)

Here, F = ℓ2(N) and dim(F) =∞

24

KPCA in the initial space

Figure 4: from Mika et al. 1998

25

Convergence of Kernel PCA

In infinite dimensions, formal link between covariance and convolution in Blanchard,

Bousquet, and Zwald 2007, Theorem 2.3

Let x1, . . . , xn ∼iid P on Rp, with Ex∥Φ(x)∥2 <∞.

In the limit n→∞, KPCA amounts to use the eigenstructure of

� The covariance operator CΦ : F → F defined as

CΦz =

∫
Rp

Φ(x)Φ(x)⊤z dP (x)

� The convolution operator KΦ : L2(P) 7→ L2(P) defined as

(KΦf)(x
′) =

∫
Rp

f(x)⟨Φ(x),Φ(x′)⟩dP (x)

(In fact, CΦ = T ∗T and KΦ = TT ∗ with T : F ∋ z 7→ z⊤Φ(·) ∈ L2(P))

26

Convergence of Kernel PCA

In infinite dimensions, formal link between covariance and convolution in Blanchard,

Bousquet, and Zwald 2007, Theorem 2.3

Let x1, . . . , xn ∼iid P on Rp, with Ex∥Φ(x)∥2 <∞.

In the limit n→∞, KPCA amounts to use the eigenstructure of

� The covariance operator CΦ : F → F defined as

CΦz =

∫
Rp

Φ(x)Φ(x)⊤z dP (x)

� The convolution operator KΦ : L2(P) 7→ L2(P) defined as

(KΦf)(x
′) =

∫
Rp

f(x)⟨Φ(x),Φ(x′)⟩ dP (x)

(In fact, CΦ = T ∗T and KΦ = TT ∗ with T : F ∋ z 7→ z⊤Φ(·) ∈ L2(P))

26

Maximum Variance Unfolding / Semidefinite Embedding

Maximum Variance Unfolding arises in Weinberger, Sha, and Saul 2004.
(formerly known as Semidefinite Embedding)

Limitations of kernel PCA

KPCA is versatile and powerful, but the choice of the kernel is crucial

Different kernels are bound to reveal different types of low dimensional structure.

Idea

Learn a kernel matrix that reveals when high dimensional inputs lie on or near a low

dimensional manifold.

27

Building Maximum Variance Unfolding: Constraints

We want a matrix K ∈ Rn×n

� Interpretable as a Gram matrix K =
(
⟨Φ(xi),Φ(xj)⟩

)
1≤i,j≤n

- Symmetry K = K⊤

- Positive semi-definiteness α⊤Kα ≥ 0 for all α ∈ Rn

� Arising from centered data
∑n

i=1Φ(xi) = 0

- This translates to
∑

i,j K(xi, xj) = 0

� That locally preserves distances in neighborhoods

For all xi, xj sharing a neighbor (or themselves neighbors),

∥Φ(xi)− Φ(xj)∥2 = ∥xi − xj∥2.

- Writing G =
(
⟨xi, xj⟩

)
i,j≤n

, this translates to

K(xi, xi) +K(xj , xj)−K(xi, xj)−K(xj , xi) = Gi,i +Gj,j −Gi,j −Gj,i

28

Building Maximum Variance Unfolding: Constraints

We want a matrix K ∈ Rn×n

� Interpretable as a Gram matrix K =
(
⟨Φ(xi),Φ(xj)⟩

)
1≤i,j≤n

- Symmetry K = K⊤

- Positive semi-definiteness α⊤Kα ≥ 0 for all α ∈ Rn

� Arising from centered data
∑n

i=1Φ(xi) = 0

- This translates to
∑

i,j K(xi, xj) = 0

� That locally preserves distances in neighborhoods

For all xi, xj sharing a neighbor (or themselves neighbors),

∥Φ(xi)− Φ(xj)∥2 = ∥xi − xj∥2.

- Writing G =
(
⟨xi, xj⟩

)
i,j≤n

, this translates to

K(xi, xi) +K(xj , xj)−K(xi, xj)−K(xj , xi) = Gi,i +Gj,j −Gi,j −Gj,i

28

Building Maximum Variance Unfolding: Constraints

We want a matrix K ∈ Rn×n

� Interpretable as a Gram matrix K =
(
⟨Φ(xi),Φ(xj)⟩

)
1≤i,j≤n

- Symmetry K = K⊤

- Positive semi-definiteness α⊤Kα ≥ 0 for all α ∈ Rn

� Arising from centered data
∑n

i=1Φ(xi) = 0

- This translates to
∑

i,j K(xi, xj) = 0

� That locally preserves distances in neighborhoods

For all xi, xj sharing a neighbor (or themselves neighbors),

∥Φ(xi)− Φ(xj)∥2 = ∥xi − xj∥2.

- Writing G =
(
⟨xi, xj⟩

)
i,j≤n

, this translates to

K(xi, xi) +K(xj , xj)−K(xi, xj)−K(xj , xi) = Gi,i +Gj,j −Gi,j −Gj,i

28

Building Maximum Variance Unfolding: Objective Function

To unfold the manifold, pull the Φ(xi)’s as far apart as possible.

Formally, this can be done by maximizing

T (Φ) :=
1

2

∑
i,j

∥Φ(xi)− Φ(xj)∥2

=
1

2

∑
i,j

K(xi, xi) +K(xj , xj)− 2K(xi, xj)

From the centering constraint,
∑

i,j K(xi, xj) = 0, so that

T (Φ) = trace(K).

29

Building Maximum Variance Unfolding

We get the following semidefinite programming (SDP) problem:

maximize trace(K) over K ∈ Rn×n

subject to Ki,i +Kj,j − 2Ki,j = Gi,i +Gj,j − 2Gi,j ,

∀(i, j) ∈ E∑
i,j

Kij = 0

K ⪰ 0

An d-dimensional embedding is then obtained by a truncated SVD of the solution to

this problem. (i.e. Kernel PCA applied to K)

Drawback: Size O(n2) SDP with O(
∑

i |Ni|2) linear constraints.

30

Building Maximum Variance Unfolding

We get the following semidefinite programming (SDP) problem:

maximize trace(K) over K ∈ Rn×n

subject to Ki,i +Kj,j − 2Ki,j = Gi,i +Gj,j − 2Gi,j ,

∀(i, j) ∈ E∑
i,j

Kij = 0

K ⪰ 0

An d-dimensional embedding is then obtained by a truncated SVD of the solution to

this problem. (i.e. Kernel PCA applied to K)

Drawback: Size O(n2) SDP with O(
∑

i |Ni|2) linear constraints. 30

Why “Maximum Variance Unfolding”?

The centering condition
∑n

i=1Φ(xi) = 0 allows to interpret the eigenvalues of the

kernel matrix as measures of variance along principal components in the feature

space F .

Figure 5: from Weinberger and Saul 2006

31

Convergence of MVU

Arias-Castro and Pelletier 2013 study the following formulation of MVU when

x1, . . . , xn ∼iid P is random.

� Choose a neighborhood radius r > 0

� Write

Yn,r :=
{
y1, . . . , yn ∈ Rp | ∥yi − yj∥1∥xi−xj∥≤r ≤ ∥xi − xj∥

}
Discrete MVU

maximize E(Y) :=
1

n(n− 1)

∑
i,j

∥yj − yi∥2

over Y = (y1 · · · yn)⊤ ∈ Rn×p

subject to Y ∈ Yn,r
32

Convergence of MVU

Discrete MVU

maximize E(Y) :=
1

n(n− 1)

∑
i,j

∥yj − yi∥2

over Y = (y1 · · · yn)⊤ ∈ Rn×p

subject to Y ∈ Yn,r

Continuum MVU

maximize E(f) :=

∫
M×M

∥f(x)− f(x′)∥2P (dx)P (dx′)

over f : Rp → Rp

subject to ∥f∥Lip ≤ 1

33

Convergence of MVU

Discrete MVU

maximize E(Y) :=
1

n(n− 1)

∑
i,j

∥yj − yi∥2

over Y = (y1 · · · yn)⊤ ∈ Rn×p

subject to Y ∈ Yn,r

Continuum MVU

maximize E(f) :=

∫
M×M

∥f(x)− f(x′)∥2P (dx)P (dx′)

over f : Rp → Rp

subject to ∥f∥Lip ≤ 1
33

Convergence of MVU

Theorem (Arias-Castro and Pelletier 2013)

Assume that r = rn → 0 slowly enough, and that

� M is compact and connected

� For all x, x′ ∈M , dM (x, x′) ≤
(
1 + o(∥x− x′∥)

)
∥x− x′∥

Then as n→∞, almost surely, we have

sup
Y ∈Yn,r

E(Y)→ sup
∥f∥Lip≤1

E(f).

Furthermore, for all solution Ŷ = (ŷ1 · · · ŷn)⊤ of Discrete MVU,

inf
∥f∥Lip≤1

max
i≤n
∥ŷi − f(xi)∥ → 0

34

Convergence of MVU: Proof Ideas (Convergence of Energy)

Coverage: With high probability, supx∈M min1≤i≤n ∥x− xi∥ ≤ η → 0

Interpolation: All Y ∈ Yn,r writes as yi = f(xi), with ∥f∥Lip ≲ 1 + η/r

⇒ sup
Y ∈Yn,r

E(Y) ≤ sup
∥f∥Lip≤1+η/r

E(Yn(f))

Comparison: For ∥f∥Lip ≲ 1− o(r), Yn(f) ∈ Yn,r

⇒ sup
Y ∈Yn,r

E(Y) ≥ sup
∥f∥Lip≤1−o(r)

E(Yn(f))

Stability: |E(f)− E(g)| and |E(Yn(f))− E(Yn(g))| ≲ ∥f − g∥∞

Concentration: Hoeffding’s Inequality for U-statistics and chaining yield

sup
∥f∥Lip≤1

|E(Yn(f))− E(f)| → 0

35

Convergence of MVU: Proof Ideas (Convergence of Energy)

Coverage: With high probability, supx∈M min1≤i≤n ∥x− xi∥ ≤ η → 0

Interpolation: All Y ∈ Yn,r writes as yi = f(xi), with ∥f∥Lip ≲ 1 + η/r

⇒ sup
Y ∈Yn,r

E(Y) ≤ sup
∥f∥Lip≤1+η/r

E(Yn(f))

Comparison: For ∥f∥Lip ≲ 1− o(r), Yn(f) ∈ Yn,r

⇒ sup
Y ∈Yn,r

E(Y) ≥ sup
∥f∥Lip≤1−o(r)

E(Yn(f))

Stability: |E(f)− E(g)| and |E(Yn(f))− E(Yn(g))| ≲ ∥f − g∥∞

Concentration: Hoeffding’s Inequality for U-statistics and chaining yield

sup
∥f∥Lip≤1

|E(Yn(f))− E(f)| → 0

35

Convergence of MVU: Proof Ideas (Convergence of Energy)

Coverage: With high probability, supx∈M min1≤i≤n ∥x− xi∥ ≤ η → 0

Interpolation: All Y ∈ Yn,r writes as yi = f(xi), with ∥f∥Lip ≲ 1 + η/r

⇒ sup
Y ∈Yn,r

E(Y) ≤ sup
∥f∥Lip≤1+η/r

E(Yn(f))

Comparison: For ∥f∥Lip ≲ 1− o(r), Yn(f) ∈ Yn,r

⇒ sup
Y ∈Yn,r

E(Y) ≥ sup
∥f∥Lip≤1−o(r)

E(Yn(f))

Stability: |E(f)− E(g)| and |E(Yn(f))− E(Yn(g))| ≲ ∥f − g∥∞

Concentration: Hoeffding’s Inequality for U-statistics and chaining yield

sup
∥f∥Lip≤1

|E(Yn(f))− E(f)| → 0

35

Convergence of MVU: Proof Ideas (Convergence of Energy)

Coverage: With high probability, supx∈M min1≤i≤n ∥x− xi∥ ≤ η → 0

Interpolation: All Y ∈ Yn,r writes as yi = f(xi), with ∥f∥Lip ≲ 1 + η/r

⇒ sup
Y ∈Yn,r

E(Y) ≤ sup
∥f∥Lip≤1+η/r

E(Yn(f))

Comparison: For ∥f∥Lip ≲ 1− o(r), Yn(f) ∈ Yn,r

⇒ sup
Y ∈Yn,r

E(Y) ≥ sup
∥f∥Lip≤1−o(r)

E(Yn(f))

Stability: |E(f)− E(g)| and |E(Yn(f))− E(Yn(g))| ≲ ∥f − g∥∞

Concentration: Hoeffding’s Inequality for U-statistics and chaining yield

sup
∥f∥Lip≤1

|E(Yn(f))− E(f)| → 0

35

Convergence of MVU: Proof Ideas (Convergence of Energy)

Coverage: With high probability, supx∈M min1≤i≤n ∥x− xi∥ ≤ η → 0

Interpolation: All Y ∈ Yn,r writes as yi = f(xi), with ∥f∥Lip ≲ 1 + η/r

⇒ sup
Y ∈Yn,r

E(Y) ≤ sup
∥f∥Lip≤1+η/r

E(Yn(f))

Comparison: For ∥f∥Lip ≲ 1− o(r), Yn(f) ∈ Yn,r

⇒ sup
Y ∈Yn,r

E(Y) ≥ sup
∥f∥Lip≤1−o(r)

E(Yn(f))

Stability: |E(f)− E(g)| and |E(Yn(f))− E(Yn(g))| ≲ ∥f − g∥∞

Concentration: Hoeffding’s Inequality for U-statistics and chaining yield

sup
∥f∥Lip≤1

|E(Yn(f))− E(f)| → 0
35

Convergence of MVU: Proof Ideas (Convergence of Solutions)

From the previous proof, any output Ŷn of Discrete MVU writes as

ŷi = f̂n(xi),

where ∥f̂n∥Lip ≤ 1 +O(η/r) and η/r → 0.

Convergence: One can show that inf∥f∥Lip≤1 ∥f̂n − f∥∞ → 0

Conclusion: By construction, for all ∥f∥Lip ≤ 1, we have

max
1≤i≤n

∥ŷi − f(xi)∥ = max
1≤i≤n

∥f̂n(xi)− f(xi)∥ ≤ ∥f̂n − f∥∞

Other Convergence Result in Paprotny and Garcke 2012

MVU asymptotically recovers a geodesic distance matrix of data.

36

Convergence of MVU: Proof Ideas (Convergence of Solutions)

From the previous proof, any output Ŷn of Discrete MVU writes as

ŷi = f̂n(xi),

where ∥f̂n∥Lip ≤ 1 +O(η/r) and η/r → 0.

Convergence: One can show that inf∥f∥Lip≤1 ∥f̂n − f∥∞ → 0

Conclusion: By construction, for all ∥f∥Lip ≤ 1, we have

max
1≤i≤n

∥ŷi − f(xi)∥ = max
1≤i≤n

∥f̂n(xi)− f(xi)∥ ≤ ∥f̂n − f∥∞

Other Convergence Result in Paprotny and Garcke 2012

MVU asymptotically recovers a geodesic distance matrix of data.

36

MVU vs Isomap

MVU can be seen as a regularized version of the shortest path problem on a graph

(Paprotny and Garcke 2012).

Write

Ei,j := (ei − ej)(ei − ej)⊤

Given the neighborhood graph G = ({1, . . . , n}, E), MVU writes as

maximize trace(K) over K ∈ Rn×n

subject to trace
(
E⊤

i,jK
)
≤ ∥xi − xj∥2 ∀(i, j) ∈ E

trace
(
(11⊤)⊤K

)
= 0

K ⪰ 0

(Ei,j transforms scalar products (back) to squared distances)

37

MVU vs Isomap

MVU can be seen as a regularized version of the shortest path problem on a graph

(Paprotny and Garcke 2012). Write

Ei,j := (ei − ej)(ei − ej)⊤

Given the neighborhood graph G = ({1, . . . , n}, E), MVU writes as

maximize trace(K) over K ∈ Rn×n

subject to trace
(
E⊤

i,jK
)
≤ ∥xi − xj∥2 ∀(i, j) ∈ E

trace
(
(11⊤)⊤K

)
= 0

K ⪰ 0

(Ei,j transforms scalar products (back) to squared distances)

37

MVU vs Isomap

Paprotny and Garcke 2012 establish another formulation of MVU in terms of squared

distance matrices D = ∆◦2.

maximize trace
(
(11⊤)⊤D

)
over D ∈ Rn×n

subject to trace
(
eje

⊤
i D
)
≤ ∥xi − xj∥2 ∀(i, j) ∈ E

D ∈ DEucl

Here, DEucl stands for the (squared) Euclidean distance matrices of order n:

DEucl =
⋃
d≥1

{(
∥yj − yi∥2

)
i,j≤n

| y1, . . . , yn ∈ Rd
}
.

DEucl is a closed convex cone.

38

MVU vs Isomap

This suggests a broad metric generalization of MVU.

Given any metric graph ({1, . . . , n}, E ,∆), non-Euclidean MVU writes as

maximize trace
(
(11⊤)⊤D

)
over D ∈ Rn×n

subject to trace
(
eje

⊤
i D
)
≤ δ2i,j ∀(i, j) ∈ E

D ∈ DMetric

Here, DMetric stands for the (squared) distance matrices of order n:

DMetric =
{(
δ2i,j
)
i,j≤n

⪰ 0 | δi,i = 0, δi,j = δj,i and δi,j ≤ δi,k + δk,j

}
.

DMetric is a closed convex cone.

The optimization can also be restricted to any C ⊂ DMetric
39

MVU vs Isomap

Theorem (Paprotny and Garcke 2012)

Let C ⊂ DMetric, and assume that G = ({1, . . . , n}, E ,∆) is connected. Then

non-Euclidean MVU over C is equivalent to

minimize ∥D −∆◦2
G ∥ℓ1 over D ∈ Rn×n

subject to trace
(
eje

⊤
i D
)
≤ δ2i,j ∀(i, j) ∈ E

D ∈ C

where

∆◦2
G is the squared geodesic distance matrix over ({1, . . . , n}, E ,∆).

40

MVU vs Isomap

minimize ∥D −∆◦2
G ∥ℓ1 over D ∈ Rn×n

subject to trace
(
eje

⊤
i D
)
≤ δ2i,j ∀(i, j) ∈ E

D ∈ C

As a corollary:

� (Generalized) MVU actually solved a shortest path problem

� Isomap writes similarly with C = D(d)
Eucl, but a ℓ2 norm

⇒ MVU ≃ ℓ1-regularized Isomap

� MVU implicitely incorporates global geodesic distances

41

MVU vs Laplacian Eigenmaps

In the same vein, variants of Laplacian Eigenmaps can be cast as the following

modified MVU program.

maximize trace(K) over K ∈ Rn×n

subject to trace
(
E⊤

i,jK
)
≤ dG(i, j)

2 ∀(i, j) ∈ E
trace

(
(11⊤)⊤K

)
= 0

K ⪰ 0

∥K∥op ≤ 1

⇒ Laplacian Eigenmaps ≃ MVU + ∥K∥op ≤ 1

42

Diffusion Maps

Diffusion Maps originate from Coifman and Lafon 2006.

Very related to Laplacian Eigenmaps

Idea

Interpret kernel K as a node affinity representing transition probabilities from

neighboring points.

Use eigenfunctions of the associated Markov chain (random walk) for embedding.

43

Markovian Framework

Let

p(xi, xj) :=
K(xi, xj)∑n
k=1K(xi, xk)

represent the probability of transition in one time step from node xi to node xj .

Unlike K, p is no longer symmetric, but can be interpreted as the transition kernel of a

reversible Markov chain.

That is, writing µX =
∑n

i=1 δxi for the empirical measure,

p : L2(X , µX) ∋ f 7→
n∑

j=1

p(·, xj)f(xj).

For all t ∈ N, the probability of transition from xi to xj t time steps is pt(xi, xj).

Matricially, pt = pt.

44

Markovian Framework

Let

p(xi, xj) :=
K(xi, xj)∑n
k=1K(xi, xk)

represent the probability of transition in one time step from node xi to node xj .

Unlike K, p is no longer symmetric, but can be interpreted as the transition kernel of a

reversible Markov chain.

That is, writing µX =
∑n

i=1 δxi for the empirical measure,

p : L2(X , µX) ∋ f 7→
n∑

j=1

p(·, xj)f(xj).

For all t ∈ N, the probability of transition from xi to xj t time steps is pt(xi, xj).

Matricially, pt = pt.

44

Spectral Decomposition of the Markov chain

Under mild assumptions on K, p has a discrete sequence of eigenfunctions

ψℓ ∈ L2(X , µX) and eigenvalues 1 = λ0 ≥ λ1 ≥ . . . ≥ λn ≥ 0, with

pψℓ = λℓψℓ.

Diffusion Maps

For all d ≥ 1, we associate embeddings indexed by t ∈ N, called diffusion maps:

Ψ
(d)
t (xi) :=

(
λt1ψ1(xi), · · · , λtdψd(xi)

)⊤ ∈ Rd.

45

Stationary Distribution

This Markov chain has a stationary distribution (πp = π) given by

π(xi) :=

∑n
j=1K(xi, xj)∑n

k,j=1K(xk, xj)
.

Diffusion Distances

For all t ∈ N, the Diffusion Distances are defined by

Dt(xi, xj)
2 := ∥pt(xi, ·)− pt(xj , ·)∥2L2(X ,µX /π)

=

n∑
k=1

(
pt(xi, xk)− pt(xj , xk)

)2 1

π(xk)
.

In fact, we also have

Dt(xi, xj)
2 =

∑
ℓ≥1

λ2tℓ (ψℓ(xi)− ψℓ(xj))
2.

46

Truncation

For all d ≥ 1, truncate the sum to obtain the Truncated Diffusion Distance

D
(d)
t (xi, xj)

2 :=

d∑
ℓ=1

λ2tℓ (ψℓ(xi)− ψℓ(xj))
2.

Isometry

By construction, diffusion map Ψt embeds the data into the Euclidean space Rd,

isometrically with respect to the diffusion distance (up to eigenvector d):

∥Ψ(d)
t (xi)−Ψ

(d)
t (xj)∥ = D

(d)
t (xi, xj).

47

Insights Behind Diffusion Maps: What do Diffusion Distances Measure?

� Dt(xi, xj) small ⇔ large number of short paths xi ↔ xj

� Dt(xi, xj) involves all paths of length t connecting xi ↔ xj

⇒ Robustness to noise (better than geodesic distance)

� t plays the role of a scale parameter. The larger t:

� The more spread the support of pt(xi, ·) (diffusion)
� The less significant eigenvalues ⇒ We can take d smaller.

Figure 6: from Coifman and Lafon 2006 48

Insights Behind Diffusion Maps

Continuous Limit

Diffusion Maps are strongly related to the Heat kernel

kM (t, ·, ·) :M ×M → R, t ≥ 0.

For all x0 ∈M , kM (t, x0, x) is the minimal positive solution of the heat equation
∂kM (t, x0, ·)

∂t
= ∆MkM (t, x0, ·)

limt→0+ kM (t, x0, x) = 1x0=x

Theorem (Grigor’yan, Hu, and Lau 2014)

For arbitrary smooth Riemannian manifold M ,

log kM (t, x0, x) ∼t→0 −dM (x0, x)
2/(4t).

49

Insights Behind Diffusion Maps

Continuous Limit

Diffusion Maps are strongly related to the Heat kernel

kM (t, ·, ·) :M ×M → R, t ≥ 0.

For all x0 ∈M , kM (t, x0, x) is the minimal positive solution of the heat equation
∂kM (t, x0, ·)

∂t
= ∆MkM (t, x0, ·)

limt→0+ kM (t, x0, x) = 1x0=x

Theorem (Grigor’yan, Hu, and Lau 2014)

For arbitrary smooth Riemannian manifold M ,

log kM (t, x0, x) ∼t→0 −dM (x0, x)
2/(4t).

49

Bayesian Methods

Stochastic Neighbor Embedding

Stochastic Neighbor Embedding (SNE) orginates from Hinton and Roweis 2002.

It has a probabilistic approach.

Idea

� Define a probability distribution over all “potential neighbors of each point” of

X ∈ Rn×p

� Align this distribution as well as possible, when doing the same operation on the

low-dimensional embedding Y ∈ Rn×d

� Measure distances between probability distributions with Kullback Leibler divergence

50

Stochastic Neighbor Embedding

Step 1: Input Probabilities. (don’t ask of what)

Given data X = (x1 | · · · | xn)⊤ ∈ Rn×p, write

pi|j =
exp(−∥xi − xj∥2/(2σ2i))∑
ℓ̸=i exp(−∥xℓ − xj∥2/(2σ2ℓ))

for all i ̸= j ∈ {1, . . . , n}

Step 2: Latent Probabilities.

Given candidate embedding Y = (y1 | · · · | yn)⊤ ∈ Rn×d, write

qi|j(Y) =
exp(−∥yi − yj∥2/(2σ2i))∑
ℓ̸=i exp(−∥yℓ − yj∥2/(2σ2ℓ))

,

Step 3: Alignment. Embed points with

Y ∈ argmin
Y ∈Rn×d

n∑
i=1

KL(Pi||Qi(Y)) =
∑
i ̸=j

pi|j log

(
pi|j

qi|j(Y)

)
51

SNE

Strengths

� Explicit (stochastic) gradient method

� Good at preserving local distances

Weaknessess

� Not so good for global representation

� Does not handle well high dimensional data (preliminary PCA and feature selection)

� Sensitive to the calibration of the hyperparameter

Variants

� With symmetrized probabilities pi,j = (pi|j + pj|i)/(2n) and qi,j = (qi|j + qj|i)/(2n)

� With other probability families: t-SNE, UMAP, LargeVis

52

SNE

Strengths

� Explicit (stochastic) gradient method

� Good at preserving local distances

Weaknessess

� Not so good for global representation

� Does not handle well high dimensional data (preliminary PCA and feature selection)

� Sensitive to the calibration of the hyperparameter

Variants

� With symmetrized probabilities pi,j = (pi|j + pj|i)/(2n) and qi,j = (qi|j + qj|i)/(2n)

� With other probability families: t-SNE, UMAP, LargeVis

52

Variants of SNE

t-SNE originates in Van Der Maaten 2009

The method adds robustness by using Student’s distribution:

Input probabilities: pi|j =
exp(−∥xi − xj∥2/(2σ2i))∑
ℓ̸=i exp(−∥xℓ − xj∥2/(2σ2ℓ))

,

Latent probabilities: qi|j =
(1 + ∥yi − yj∥2/δ)−(δ+1)/2∑
ℓ̸=i(1 + ∥yi − yℓ∥2/δ)−(δ+1)/2

.

From t-SNE to SNE

When δ →∞, we recover regular SNE.

LargeVis

(Tang et al. 2016) approximates k-NN to accelerate computations.

53

Variants of SNE

t-SNE originates in Van Der Maaten 2009

The method adds robustness by using Student’s distribution:

Input probabilities: pi|j =
exp(−∥xi − xj∥2/(2σ2i))∑
ℓ̸=i exp(−∥xℓ − xj∥2/(2σ2ℓ))

,

Latent probabilities: qi|j =
(1 + ∥yi − yj∥2/δ)−(δ+1)/2∑
ℓ̸=i(1 + ∥yi − yℓ∥2/δ)−(δ+1)/2

.

From t-SNE to SNE

When δ →∞, we recover regular SNE.

LargeVis

(Tang et al. 2016) approximates k-NN to accelerate computations.

53

t-SNE on Synthetic Data

Catching Complex Geometries

Figure 7: https://distill.pub/2016/misread-tsne/

54

https://distill.pub/2016/misread-tsne/

t-SNE on Synthetic Data

tSNE does not account for between-cluster distance
50 points

200 points

What about random noise ?

Figure 8: https://distill.pub/2016/misread-tsne/

55

https://distill.pub/2016/misread-tsne/

Variants of SNE

Uniform Manifold Approximation and Projection

UMAP originates in McInnes, Healy, and Melville 2018.

The original paper claims that it functorializes embeddings.

Figure 9: from McInnes, Healy, and Melville 2018

56

Variants of SNE

Uniform Manifold Approximation and Projection

UMAP originates in McInnes, Healy, and Melville 2018.

The original paper claims that it functorializes embeddings.

Figure 9: from McInnes, Healy, and Melville 2018 56

Variants of SNE

UMAP

Take input probabilities as

pij = pj|i + pi|j − pj|ipi|j ,

where

pj|i ∝ exp

(
−∥xi − xj∥ − ρi

σi

)
and ρi = min

j ̸=i
∥xi − xj∥,

and latent probabilities as

qij ∝
(
1 + a∥yi − yj∥2b2

)−1

The criterion is the cross-entropy:

Y ∈ argmin
Y ∈Rn×d

−
∑
i<j

pij log qij + (1− pij) log(1− qij).

57

Variants of SNE

UMAP

Take input probabilities as

pij = pj|i + pi|j − pj|ipi|j ,

where

pj|i ∝ exp

(
−∥xi − xj∥ − ρi

σi

)
and ρi = min

j ̸=i
∥xi − xj∥,

and latent probabilities as

qij ∝
(
1 + a∥yi − yj∥2b2

)−1

The criterion is the cross-entropy:

Y ∈ argmin
Y ∈Rn×d

−
∑
i<j

pij log qij + (1− pij) log(1− qij).

57

Visual comparison

� Blobs: A set of five separated gaussian blobs in 10 dimensional space. This should

be a prototypical example

� Iris: a classic small dataset with one distinct class and two classes that are not

clearly separated.

� Digits: handwritten digit. Due to the nature of handwriting, digits may have several

forms (crossed or uncrossed sevens, capped or straight line “0”, etc.)

� Wine: wine characteristics ideally used for a toy regression. Ultimately the data is

essentially one dimensional in nature.

� Swiss Roll: data is essentially a rectangle, but has been ”rolled up” like a swiss roll

in three dimensional space.

� Sphere: the two dimensional unit sphere. It has been coloured with hue around the

equator and black to white from the south to north pole.

58

Unified Framework: Graph Coupling

Van Assel et al. 2022 proposed a unifying framework based on a Bayesian Method and

Graph Couplings.

Idea

� Model: Observations X and Y are structured by two latent (weighted) graphs WX

and WY .

� Prior: Consider random graphs (WX ,WY) distributed according to some predefined

prior distributions.

� Posterior Alignment: Match the posterior distributions of WX |X and WY |Y with a

cross-entropy criterion.

The associated minimization is called graph coupling.

See also (Damrich and Hamprecht 2021) for links with force-directed graph drawing.

60

Unified Framework: Graph Coupling

Fix a symmetric kernel k : Rp → R≥0.

Model for X|W

Given W , consider the (unnormalized) density X|W given by

fK : Rn×p × [0 : n]n×n −→ R≥0

(X|W) 7−→
∏

1≤i,j≤n k
(
(xi − xj)/τi

)Wi,j

fK(x|W) large ⇔ (x, x′) 7→ k(x− x′) varies smoothly on W

Given W ∈ [0 : n]n×n, define the conditional distribution on Rn×p

P(dX|W) := CK(W)−1fK(X|W)dλRn×p(dX)

(Hiding integrability issues due to translation invariance depending on W)

61

Unified Framework: Graph Coupling

Fix a symmetric kernel k : Rp → R≥0.

Model for X|W

Given W , consider the (unnormalized) density X|W given by

fK : Rn×p × [0 : n]n×n −→ R≥0

(X|W) 7−→
∏

1≤i,j≤n k
(
(xi − xj)/τi

)Wi,j

fK(x|W) large ⇔ (x, x′) 7→ k(x− x′) varies smoothly on W

Given W ∈ [0 : n]n×n, define the conditional distribution on Rn×p

P(dX|W) := CK(W)−1fK(X|W)dλRn×p(dX)

(Hiding integrability issues due to translation invariance depending on W)

61

Unified Framework: Graph Coupling

Priors for W

Build conjugate priors constraining the topology of the graph:

(B) Binary ΩB(W) =
∏

i,j I{Wi,j ≤ 1}
(D) Unitary out-degree ΩD(W) =

∏
i I{
∑

j Wi,j = 1}
(E) With n-edges ΩE(W) = I{

∑
i,j Wi,j = n}

∏
1≤i,j≤n(Wi,j !)

−1

For P ∈ {B,D,E}, π ∈
(
R≥0

)n×n
and α ≥ 0,

PP,K(W ;π, α) ∝ CK(W)αΩP(W)
∏

1≤i,j≤n

π
Wi,j

i,j .

62

Unified Framework: Graph Coupling

Priors for W

When W ∼ PP,K(·;π, α = 0),

(B) Wi,j
⊥⊥∼ Bernoulli(πi,j/(1 + πi,j))

↪→ Each edge independent

(D) Wi
⊥⊥∼ Multinomial(1, πi/

∑
j πi,j)

↪→ Each node chooses its (unique) neighbor independently

(E) W ∼ Multinomial(n, π/
∑

i,j πi,j)

↪→ n edges overall, chosen multinomially

63

Unified Framework: Graph Coupling

Posterior W |X
Theorem (Van Assel et al. 2022)

Under mild assumptions, if W ∼ PP(·, π, α = 1), then

W |X ∼ PP(·, π ⊙KX),

where ⊙ is the Hadamard product, and KX =
(
k(xi − xj)

)
i,j≤n

(B) Wi,j |X
⊥⊥∼ Bernoulli

(
πi,jk(xi−xj)

1+πi,jk(xi−xj)

)
(D) Wi|X

⊥⊥∼ Multinomial

(
1,
(

πi,jk(xi−xj)∑
ℓ≤n πiℓk(xi−xℓ)

)
j≤n

)
(E) W |X ∼ Multinomial

(
n,
(

πi,jk(xi−xj)∑
ℓ,t≤n πℓ,tk(xℓ−xt)

)
i,j≤n

)

64

Unified Framework: Graph Coupling

Posterior W |X
Theorem (Van Assel et al. 2022)

Under mild assumptions, if W ∼ PP(·, π, α = 1), then

W |X ∼ PP(·, π ⊙KX),

where ⊙ is the Hadamard product, and KX =
(
k(xi − xj)

)
i,j≤n

(B) Wi,j |X
⊥⊥∼ Bernoulli

(
πi,jk(xi−xj)

1+πi,jk(xi−xj)

)
(D) Wi|X

⊥⊥∼ Multinomial

(
1,
(

πi,jk(xi−xj)∑
ℓ≤n πiℓk(xi−xℓ)

)
j≤n

)
(E) W |X ∼ Multinomial

(
n,
(

πi,jk(xi−xj)∑
ℓ,t≤n πℓ,tk(xℓ−xt)

)
i,j≤n

)
64

Unified Framework: Graph Coupling

Graph Coupling

Consider both graph priors with π = (1)1≤i,j≤n and α = 1.

For (PX ,PY) ∈ {B,D,E}2, minimize the cross entropy between the posteriors:

Y ∈ argmin
Y ∈Rn×d

{
HX,Y := −EWX∼PPX

(·;KX) [logPPY
(WX ;KY)]

}

PX

PY
B D E

B̃ UMAP (∗) (∗)
D LargeVis SNE T-SNE

E (∗) (∗) Tang et al. 2016

(∗) yield Support(PPX
) ̸⊂ Support(PPY

), so that HX,Y =∞.

65

Unified Framework: Graph Coupling

Graph Coupling

Consider both graph priors with π = (1)1≤i,j≤n and α = 1.

For (PX ,PY) ∈ {B,D,E}2, minimize the cross entropy between the posteriors:

Y ∈ argmin
Y ∈Rn×d

{
HX,Y := −EWX∼PPX

(·;KX) [logPPY
(WX ;KY)]

}

PX

PY
B D E

B̃ UMAP (∗) (∗)
D LargeVis SNE T-SNE

E (∗) (∗) Tang et al. 2016

(∗) yield Support(PPX
) ̸⊂ Support(PPY

), so that HX,Y =∞.
65

Interpretations Gained

Attraction / Repulsion

Decomposing and simplifying HX,Y with Bayes’, we get

argmin
Y ∈Rn×d

−
∑

1≤i,j≤n

PPX
i,j log ky(yi − yj) + logP(Y).

� PPX
i,j is the posterior expectation of WX

↪→ Tends to bring yi’s close.

For the Gaussian kernel − log ky(t) ∝ t2,

−
∑

1≤i,j≤n

PPX
i,j log ky(yi − yj) = trace

(
Y ⊤EW∼PPX

(·,KX)[L(W)]Y
)

is reminiscent of Laplacian Eigenmaps

� P(Y) =
∑

W P(Y,W) with P(Y,W) ∝ fK(Y |W)ΩPY
(W)

↪→ Prevents singular solutions (Y |WY modal at Y = (y · · · y)⊤) 66

PCA as Graph Coupling

Theorem (Van Assel et al. 2022)

For ν ≥ n, let ΘX ∼Wishart(ν, In) and ΘY ∼Wishart(ν + p− d, In) be random

precision matrices. Assume that

X|ΘX ∼ N (0,Θ−1
X ⊗ Ip)

Y |ΘY ∼ N (0,Θ−1
Y ⊗ Id)

Then the solution of the precision coupling problem:

min
Y ∈Rn×d

−EΘX |X [logP(ΘX = ΘY |Y)]

is a PCA embedding of X with d components.

Van Assel et al. 2022 define a hierarchical graph model to capture both global (PCA)

and local (SNE) structures. 67

References

Arias-Castro, Ery and Bruno Pelletier (2013). “On the convergence of maximum
variance unfolding”. In: The journal of machine learning research 14.1, pp. 1747–1770.

Belkin, M. and P. Niyogi (2003). “Laplacian eigenmaps for dimensionality
reduction and data representation”. In: Neural computation 15.16, pp. 1373–1396.

Belkin, Mikhail and Partha Niyogi (2006). “Convergence of laplacian eigenmaps”.
In: Advances in neural information processing systems 19.

Blanchard, Gilles, Olivier Bousquet, and Laurent Zwald (2007). “Statistical
properties of kernel principal component analysis”. In: Machine learning 66.2,

pp. 259–294.

68

Budninskiy, Max, Gloria Yin, Leman Feng, Yiying Tong, and Mathieu Desbrun (2019).
“Parallel transport unfolding: a connection-based manifold learning
approach”. In: Siam journal on applied algebra and geometry 3.2, pp. 266–291.

Coifman, R.R. and S. Lafon (2006). “Diffusion maps”. In: Applied and computational

harmonic analysis 21.1, pp. 5–30.

Damrich, Sebastian and Fred A Hamprecht (2021). “On umap’s true loss function”.
In: Advances in neural information processing systems 34, pp. 5798–5809.

Donoho, D.L. and C. Grimes (2003). “Hessian eigenmaps: Locally linear
embedding techniques for high-dimensional data”. In: P. natl. acad. sci. usa
100.10, pp. 5591–5596.

Garćıa Trillos, Nicolás, Moritz Gerlach, Matthias Hein, and Dejan Slepčev (2020).
“Error estimates for spectral convergence of the graph laplacian on random
geometric graphs toward the laplace–beltrami operator”. In: Foundations of
computational mathematics 20.4, pp. 827–887.

Grigor’yan, Alexander, Jiaxin Hu, and Ka-Sing Lau (2014). “Heat kernels on metric
measure spaces”. In: Geometry and analysis of fractals. Springer, pp. 147–207.

69

Hall, Kenneth M (1970). “An r-dimensional quadratic placement algorithm”. In:
Management science 17.3, pp. 219–229.

Hinton, Geoffrey E and Sam Roweis (2002). “Stochastic neighbor embedding”. In:
Advances in neural information processing systems 15.

Klimenta, Mirza (2012). “Extending the usability of multidimensional scaling for
graph drawing”. PhD thesis. Universität Konstanz.

McInnes, Leland, John Healy, and James Melville (2018). “Umap: uniform manifold
approximation and projection for dimension reduction”. In: Arxiv preprint

arxiv:1802.03426.

Mika, Sebastian, Bernhard Schölkopf, Alex Smola, Klaus-Robert Müller,
Matthias Scholz, and Gunnar Rätsch (1998). “Kernel pca and de-noising in
feature spaces”. In: Advances in neural information processing systems 11.

Paprotny, Alexander and Jochen Garcke (2012). “On a connection between
maximum variance unfolding, shortest path problems and isomap”. In:
Artificial intelligence and statistics, pp. 859–867.

70

Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller (1998). “Nonlinear
component analysis as a kernel eigenvalue problem”. In: Neural computation

10.5, pp. 1299–1319.

Tang, Jian, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei (2016). “Visualizing
large-scale and high-dimensional data”. In: Proceedings of the 25th international

conference on world wide web, pp. 287–297.

Van Assel, Hugues, Thibault Espinasse, Julien Chiquet, and Franck Picard (2022). “A
probabilistic graph coupling view of dimension reduction”. In: Arxiv preprint

arxiv:2201.13053.

Van Der Maaten, Laurens (2009). “Learning a parametric embedding by
preserving local structure”. In: Artificial intelligence and statistics. PMLR,

pp. 384–391.

Wahl, Martin (2024). A kernel-based analysis of laplacian eigenmaps. arXiv:
2402.16481 [math.ST]. url: https://arxiv.org/abs/2402.16481.

71

https://arxiv.org/abs/2402.16481
https://arxiv.org/abs/2402.16481

Weinberger, Kilian Q and Lawrence K Saul (2006). “Unsupervised learning of
image manifolds by semidefinite programming”. In: International journal of
computer vision 70.1, pp. 77–90.

Weinberger, K.Q., F. Sha, and L.K. Saul (2004). “Learning a kernel matrix for
nonlinear dimensionality reduction”. In: International confernence on machine

learning (icml), p. 106.

Zhang, Zhenyue and Hongyuan Zha (2004). “Principal manifolds and nonlinear
dimensionality reduction via tangent space alignment”. In: Siam journal on

scientific computing 26.1, pp. 313–338.

72

	More Graph and Spectral Methods
	Kernel Methods
	Bayesian Methods
	References

